

Approaches to Practical Sewer Pipe Inspection Technology Using Drones, **Based on Public-Private-Academic Partnership**

* Kazuhiro Nitta, ** Mikio Urabe, *** Kazuya Sakai, **** Akira Hosoda ***** Yasue Noda

*Sewer Pipeline Management Division, Environmental Planning Bureau, City of Yokohama +81-45-671-2831 **Business Management Headquarters, Nihon Suido Consultants Co., Ltd. +81-35-323-6219

***UAS Division, Blue innovation Co., Ltd. +81-36-801-8781

****Yokohama National University Institute of Urban Innovation +81-45-339-4044 *****Ministry of Land, Infrastructure, Infrastructure, Transport and Tourism, Wastewater System Division +81-29-864-2328

INTRODUCTION

City of Yokohama, with an area of 42,531ha and a total population of approximately 3.74 million, has enormous amount of assets compared to other sewerage facilities — 99.9% coverage of sewerage supply system, approximate 11,900km in total pipe length of the sewerage pipeline facility, about 530,000 pieces of manholes, about 1,400,000 pieces of inlets and service connections, and investment of about 2.7 trillion yen already made (approximately 70% of total amount of investment). Currently, approximate 800km (7%) of total pipe length has ended its 50 years of standard service life. It'll be expected to get deteriorated rapidly, like approximate 7,900km (67%) after two decades.

This time, we will report about engagement in collaborative investigation into the medium to large diameter pipe that makes up approximate 1,900km of total pipe length, toward the practical use of a new inspection technique utilizing unmanned aerial vehicles (hereinafter, drones) that are gradually utilized for infrastructure inspections, etc. [Aims of this investigation]

- To ensure the workers' safety in pipelines that are difficult to investigate
- (work in drastic swollen water by torrential rain, or in oxigenless/hydrogen sulfide generated environment) · To reduce the cost for inspections (improve productivity)

(reduction in the inspection cost by improvement of running speed, etc. compared to

conventional underwater visual inspections and self-propelled TV camera car, etc.) [Keywords] Drone, Industry-academia-government, Sewerage inspection survey, Medium to large diameter pipe

METHODS

[Flight control styles of drones]

- "Manual flight"; visual flight that you operate while directly watching a drone, or non-visual flight that you operate while watching a screen image at hand.
- "Automatic flight"; control a flight with a variety of sensors mounted on a drone
- [Problems in applying drones to pipe inspections]
- Non-GPS environment
- DarknessSewage is flowing
- · Narrow space
- Needs to carry inspection equipment from a manhole cover.
- ⇒Compared to the other infrastructure inspections conducted with drones, this application faces



Figure 1 Diagram of inspection with a drone

RESULTS

[Investigation results] Applied caliber

table flights are confirmed in circular pipes from \u03c61800mm to \u03c63000mm.

*In ø1500mm of circular pipe, a flight is not stable due to reflecting wind made by a drone itself.

Inspection level (trouble confirmation accuracy)

- Got similar images as pictures along the direct vision in the underwater visual inspections.
 Got a result that rank A and B were basically available to be judged.
- *Didn't get images reaching detail inspection level

• Flight length

 φ3000mm : from 45m to 500m *Judgment on the basis of operators' abilities and stable condition of flights · Other flight length of each caliber (see Table 4)

Figure 3 Pattern diagram of inspection work by drone

Table 4 Summary of flight experiment results

Classification	Manual flight							Automatic flight	
Caliber of test target pipe	Φ1500		Φ1800	Φ2000	Φ2350	□ 2700 × 2700	Φ3000		□ 2700 × 2700
Pipe classification	Combined sewer	Rainwater pipe	Rainwater pipe	Rainwater pipe	Rainwater pipe	(Former combined sewer)	Combined sewer	Rainwater pipe	(Former combined sewer)
Planar linear	Strait line	Strait line	Strait line / Curve mixed	Curve	Curve	Strait line	Strait line	Curve	Strait line
Presence of water flow (water depth)	Yes (25 cm)	No (Water stagnant in some sections)	No	No	No	No	Yes (30 cm)	No	No
Used aircraft *2 Flight record One way extension One way / round trip	p: 12 m (Round trip)	M.P: 20 m (Round trip)	M.P: Strait line part 66 m (Round trip) Curve part 32 m (One way)	P: 540 m (One way)	M.P.S: 30 m (Round trip) F: 175 m (One way)	M.P.F: 30 m (Round trip)	P.S: 45 m (Round trip)	p: 500 m (One way)	 (Hovering only)

(1) Road map on formulating plans to extend the service life of sewerage on the basis of physical asset management method (Proposal) Sep. 2013 Sewerage and Wastewater Management Department, Water and Disaster Management Bureau, MLIT (2) Mikio Urabe and others from Nihon Suido Consultants Co., Ltd. "Engagement in practical use of the pipe corresion investigation technique, utilizing unmanned aerial vehicles" The 55th Sewerage Investigation Workshop, collection of lectures

DISCUSSION

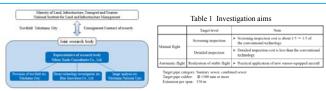


Figure 2 Division of roles of investigation community

Table 2 Criteria

Judgment item	Rank A	Rank B	Rank C	
1) Corrosion of pipe	Rebar exposed condition	Aggregate exposed state	Surface is rough	
2) Sagging in the vertical direction	1/4 or more of inner caliber	1/8 or more of inner caliber	Less than 1/8 of inner caliber	
3) Pipe breakage	Missing	With axial cracks width 2 mm or more	With axial cracks width less than 2 mm	
4) Pipe crack	With circumferential crack width 5 mm or more	With circumferential crack width 2 mm or more	With circumferential crack width less than 2 mm	
5) Joint displacement of pipe	Break away	70 mm or more	Less than 70 mm	
6) Intrusion water	Blowing out	Flowing	Oozing	
7) Overhang of mounting pipe	1/2 or more of main pipe inner caliber	1/10 or more of main pipe inner caliber	Less than 1/10 of main pipe inner caliber	
8) Attachment of grease	1/2 or more of inner caliber blocked	Less than 1/2 of inner caliber blocked		
9) Tree invasion	1/2 or more of inner caliber blocked	Less than 1/2 of inner caliber blocked		
10) Mortar adhesion	30% or more of inner caliber	10% or more of inner caliber	Less than 10% of inner calibe	

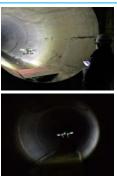
[Description of field experiments]

"Manual flight"

- · Aimed at reducing costs, LED lights, etc. are customized based on commercial aircrafts. 'Automatic flight'
- Automater flying automatically while estimating locations, a variety of sensors, like lasers, and a spherical guide are mounted by our original development.

Table 3 Overview of the aircrafts used in this study

Classification		Automatic Aircraft body			
Aircraft name	Commercial aircraft 1 Mavic Pro	Commercial aircraft 2 Phantom 4 Pro	Commercial aircraft 3 Splash Drone 3	Commercial aircraft 4 Flyability	To be determined
Aircraft photograph		Store Solo	1		×
Carry into manhole (Passability through manhole lid of Φ 600)	0	0	∆ carry-able into manhole if removing propeller	0	0
Aircraft weight	About 1.1 kg	About 1.4 kg	About 2.4 kg	About 0.7 kg	About 1.3 kg
Payload	About 0.3 kg *1	About 1 kg *1	About 1 kg		About 0.2 kg
Light Added a commercially available LED		Added a commercially available LED	Added a commercially available LED	Standard LED only	(Not installed)
Waterproof	×	×	0	×	×
Camera Standard camera only		Upper: Commercial camera Bottom: Standard camera	Upper: Commercial camera Bottom: Standard camera	Standard camera only	(Not installed)


CONCLUSIONS

[Manual flight]

- Its utility as a screening inspection has been proved It costs about 2/3 of conventional cost
- [Automatic flight]
- · A stable automatic flight hasn't been achieved
- [Tasks]
- Apply aircrafts having "waterproof property"
 Achieve "cost reduction"

Picture 2 Experiment scenes

ent of grea

Oxygen deficiency / toxic gas environmen Picture 1 Example of pipelines that are difficult to investigate