

TECHNICAL SESSION

Approaches to Practical Sewer Pipe Inspection Technology Using Drones, Based on Public-Private-Academic Partnership

Masato Yasuda

Sewer Management Division,

Environmental Planning Bureau,

City of Yokohama

Flow of Today's Presentation

Current state of Sewer System Inspections in Yokohama city Research Overview Results and Conclusions Future Plans

Outline of Yokohama

C)Hideo MORI

Yokohama Major Sewer System

Massive Number of the Sewer Assets

1,900 km

10,000 km →Φ < 800 mm (small diameter)

 \rightarrow 800 mm $\leq \Phi$ (mid/large diameter)

Total Sewer Length

= <u>11,900km</u>

× <u>530,000</u>

Manholes

Transition in Number of Road Cave-ins Caused by Sewer System

Reinforcing steel exposed

Sewer Pipe Ageing

- Sewer pipe ageing will progress rapidly
 - → Effective planning, inspections, screenings and renovations are required.

Distribution map showing over-50-yrs old pipes in Yokohama city

Screening/Inspection/Renovation Work Flow

Mid-to-large-diameter Pipes not Being Screened

[Nozzle camera]

Detailed Inspection

[CCTV]

Φ < 800 mm

Screening

800 mm ≤ Φ

keen

Detailed Inspection [Mid-to-large sized CCTV, visual inspection]

Repair/Renovation

Repair/Renovation

(C)Hideo MOR

Difficult-to-Inspect Medium-to-Large Diameter Pipes

Issues in Inspections of Medium-to-Large Diameter Pipes

1. <u>Screening for Establishing a More</u> Efficient Inspection System

2. Inspecting Difficult-to-Inspect Pipelines

Using New Technology - Drones

Developing an inspection method beyond the concept of conventional technologies.
Almost no precedent in Japan.

The formation of a new research system Public-Private-Academic Partnership

✓ Division of roles to get the most from private, academic and public sectors

(C)Hideo MOF

Drone Flight Types

Operators control a drone with direct visual contact

- Operators watch the monitor to control a drone
 - Customized from the commercial model

Manual

 Automatic → Thanks to the sensors mounted on a drone, Automatic flight is available.
Our originally developed drone

Inspection Accuracy

- Screening \rightarrow Identify the existence of A or B
- Detailed Inspection \rightarrow Evaluate the rank (A-C) quantitatively

Judgment item	Rank A	Rank B	Rank C
Pipe crack	Crack- width 5mm or more	Crack- width 2mm or more	Crack- width less than 2mm
Sagging	1/4 or more of inner-diameter	1/8 or more of inner-diameter	Less than 1/8 of inner-diameter
Infiltration	High	Moderate	Low

Issues Confronting Practical Application of Drones

- Non-GPS environments
- Darkness
- Sewer flows
- Confined spaces
- Carry-in of equipment though manholes

• Cost

Drone Flight Validation Tests

Flight Tested Under Various Conditions

Diameter	1,500 mm - 3,000 mm
shape	Circular or square
Line	Straight or curved
Water flow	Yes/No
Models tested	Five
Accessories mounted	Yes / No

Table of Flight Validation Test Results

1.Long-distance stable flight

2.Difficult-to-inspect pipeline

Classification	Manual flight			
Diameter	Φ2000	Ф3000		
Sewer type	Rainwater pipe	Rainwater pipe	Combined sewer	
Line	Curve	Curve	Strait	
Water flow	No	No	Yes(30cm)	
Flight record	540m One way	500m One way	45m Round trip	

Flight validation Experiment Video (1/2)

Confirming Long-distance Stable Flight

Flight validation Experiment Video (2/2)

Confirming Stable Flight in Difficult-to-inspect Pipeline (Rapid Flow)

Video from drone camera

Video from starting point

Cost Comparison

Estimates show inspection cost to be approximately 2/3 of inspections using conventional technology

Results and Issues Obtained from Tests

Results obtained

✓ Flight was stable in pipes Φ1,800 mm - Φ3,000 mm

Judging abnormalities was accurate

✓ Cost was 2/3 of the conventional inspection

Issues raised

Waterproofing was insufficient

✓ Operator's capability affected the performance

Machine body was not stable due to reflection wind

Conclusion

 Screening to Establish a More Efficient Inspection System
→ Manual flight-mode is effective

2. Inspecting Difficult-to-Inspect Pipelines →Inspections available under certain conditions (space, reflection wind, etc.)

Future Plans

Short-term plans

	Manual Flight	Automatic Flight
2018	Test flights in pipe	Improve mounted sensors
2019	Practical application (Pipe-screening)	Test flight in actual pipe
2020		Achieve independent flight across one span
ng-te	rm plans	

Complete automatic flight while judging failures at the same time. Automated Decision-maiking on repairs by utilizing Al.

Thank you for listening!!

Thank you for your kind attention

Nihon Suido Consultants.,Ltd. Blue Innovation.,Ltd. Yokohama National Univ.

Masato Yasuda

the second s

